翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

contact resistance : ウィキペディア英語版
contact resistance
The term contact resistance refers to the contribution to the total resistance of a system which can be attributed to the contacting interfaces of electrical leads and connections as opposed to the intrinsic resistance, which is an inherent property, independent of the measurement method. The idea of potential drop on the injection electrode was introduced by William Shockley 〔W. Shockley, “Research and investigation of inverse epitaxial UHF power transistors,” Report No. A1-TOR-64-207, September 1964.〕 to explain the difference between the experimental results and the model of gradual channel approximation. The term "electrical contact resistance" (ECR), was chosen for the contribution of the metal–semiconductor interface to this phenomenon. "Interface resistance", "transitional resistance", or just simply "correction term" were also used. The term "parasitic resistance" was later used as a more general term, where it is usually still assumed that the
contact resistance has a major contribution.
==Experimental characterization==
Here we need to distinguish the contact resistance evaluation in two-electrode systems (e.g. diodes) and three-electrode systems (e.g. transistors).
For two electrode systems the specific contact resistivity is experimentally defined as the slope of the I-V curve at V=0:
:r_c = \left\ \right\}_
where J is the current density = current/area. The units of specific contact resistivity are typically therefore in \Omega \cdot \text^2 where \Omega stands for ohms. When the current is a linear function of the voltage, the device is said to have ohmic contacts.
The resistance of contacts can be crudely estimated by comparing the results of a four terminal measurement to a simple two-lead measurement made with an ohmmeter. In a two-lead experiment, the measurement current causes a potential drop across both the test leads and the contacts so that the resistance of these elements is inseparable from the resistance of the actual device, with which they are in series. In a four-point probe measurement, one pair of leads is used to inject the measurement current while a second pair of leads, in parallel with the first, is used to measure the potential drop across the device. In the four-probe case, there is no potential drop across the voltage measurement leads so the contact resistance drop is not included. The difference between resistance derived from two-lead and four-lead methods is a reasonably accurate measurement of contact resistance assuming that the leads resistance is much smaller. Specific contact resistance can be obtained by multiplying by contact area. It should also be noted that the contact resistance may vary with temperature.
Inductive and capacitive methods could be used in principle to measure an intrinsic impedance without the complication of contact resistance. In practice, direct current methods are more typically used to determine resistance.
The three electrode systems such as transistors require more complicated methods for the contact resistance approximation. The most common approach is the transmission line model (TLM). Here, the total device resistance R_ is plotted as a function of the channel length:
:R_ = R_c + R_ = R_c + \frac)}
where R_ and R_ are contact and channel resistancies, respectively, L/W is the channel length/width, C is gate insulator capacitance (per unit of area), \mu is carrier mobility, and V_ and V_ are gate-source and drain-source voltages. Therefore, the linear extrapolation of total resistance to the zero channel length provides the contact resistance. The slope of the linear function is related to the channel transconductance and can be used for estimation of the ”contact resistance-free” carrier mobility. The approximations used here (linear potential drop across the channel region, constant contact resistance,...) lead sometimes to the channel dependent contact resistance.
Beside the TLM it was proposed the gated four-probe measurement and the modified time-of-flight method (TOF). The direct methods able to measure potential drop on the injection electrode directly are the Kelvin probe force microscopy (KFM) and the electric-field induced second harmonic generation.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「contact resistance」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.